Gap theorems for ends of smooth metric measure spaces

نویسندگان

چکیده

In this paper, we establish two gap theorems for ends of smooth metric measure space ( M n , g e − f d v stretchy="false">) (M^n, g,e^{-f}dv) with the Bakry-Émery Ricci tensor alttext="upper R i c Subscript greater-than-or-equal-to minus left-parenthesis 1 Ric ≥ = movablelimits="true" form="prefix">sup stretchy="false">| encoding="application/x-tex">\epsilon =\epsilon (n,\sup _{B_{o}(1)}|f|) such at most if less-than-or-equal-to epsilon"> ≤<!-- ≤ encoding="application/x-tex">R\le \epsilon one half"> 2 \frac 12 alttext="f x fourth squared plus c"> x 4 + c encoding="application/x-tex">f(x)\le 14d^2(x,B_{o}(R))+c constant alttext="c greater-than &gt; encoding="application/x-tex">c&gt;0 can also get same conclusion.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marked Metric Measure Spaces

A marked metric measure space (mmm-space) is a triple (X , r,μ), where (X , r) is a complete and separable metric space and μ is a probability measure on X × I for some Polish space I of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed I . It arises as a state space in the construction of Markov processes which take values in random ...

متن کامل

Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps

In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...

متن کامل

Measure Extension Theorems for T0-spaces

The theme of this paper is the extension of continuous valuations on the lattice of open sets of a T0-space to Borel measures. A general extension principle is derived that provides a unified approach to a variety of extension theorems including valuations that are directed suprema of simple valuations, continuous valuations on locally compact sober spaces, and regular valuations on coherent so...

متن کامل

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

متن کامل

Best proximity point theorems in 1/2−modular metric spaces

‎In this paper‎, ‎first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points‎. ‎Finally‎, ‎as consequences of these theorems‎, ‎we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces‎. ‎We present an ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2022

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/16022